Exact multiplicity of solutions for discrete second order Neumann boundary value problems
نویسندگان
چکیده
where h : [,T]Z → R, u(t) = u(t + ) – u(t) and T > is a given positive integer. Our purpose is to find the exact number of solutions and positive solutions of (.). In these last years, the existence andmultiplicity of solutions for nonlinear discrete problems subject to various boundary value conditions have been widely studied by using different abstract methods such as critical point theory, fixed point theorems, lower and upper solutions method, and Brower degree (see, e.g., [–] and the references therein). All these results are about the unique solution, or the minimum amount of solutions, and positive solutions. To the best of our knowledge, there is no report on the exact number of solutions for discrete boundary value problems. For BVPs of differential equations, there are many papers concerned with the bifurcation values and exact multiplicities of solutions and positive solutions by bifurcation theory, quadraturemethod, time-map analysis and otherwise. See [–] and the references therein. For difference equations, however, the loss of continuity puts somemethods used well in differential equations, such as the quadrature method and its time-map analysis, out of action. Therefore, it is very meaningful to study the exact number of solutions for
منابع مشابه
Nonexistence and existence results for a 2$n$th-order $p$-Laplacian discrete Neumann boundary value problem
This paper is concerned with a 2nth-order p-Laplacian difference equation. By using the critical point method, we establish various sets of sufficient conditions for the nonexistence and existence of solutions for Neumann boundary value problem and give some new results. Results obtained successfully generalize and complement the existing ones.
متن کاملNUMERICAL SOLUTIONS OF SECOND ORDER BOUNDARY VALUE PROBLEM BY USING HYPERBOLIC UNIFORM B-SPLINES OF ORDER 4
In this paper, using the hyperbolic uniform spline of order 4 we develop the classes of methods for the numerical solution of second order boundary value problems (2VBP) with Dirichlet, Neumann and Cauchy types boundary conditions. The second derivativeis approximated by the three-point central difference scheme. The approximate results, obtained by the proposed method, confirm theconvergence o...
متن کاملOn a class of systems of n Neumann two-point boundary value Sturm-Liouville type equations
Employing a three critical points theorem, we prove the existence ofmultiple solutions for a class of Neumann two-point boundary valueSturm-Liouville type equations. Using a local minimum theorem fordifferentiable functionals the existence of at least one non-trivialsolution is also ensured.
متن کاملTENSION TRIGONOMETRIC SPLINES INTERPOLATION METHOD FOR SOLVING A LINEAR BOUNDARY VALUE PROBLEM
By using the trigonometric uniform splines of order 3 with a real tension factor, a numericalmethod is developed for solving a linear second order boundary value problems (2VBP) withDirichlet, Neumann and Cauchy types boundary conditions. The moment at the knots isapproximated by central finite-difference method. The order of convergence of the methodand the theory is illustrated by solving tes...
متن کاملOn Approximate Stationary Radial Solutions for a Class of Boundary Value Problems Arising in Epitaxial Growth Theory
In this paper, we consider a non-self-adjoint, singular, nonlinear fourth order boundary value problem which arises in the theory of epitaxial growth. It is possible to reduce the fourth order equation to a singular boundary value problem of second order given by w''-1/r w'=w^2/(2r^2 )+1/2 λ r^2. The problem depends on the parameter λ and admits multiple solutions. Therefore, it is difficult to...
متن کامل